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Taxonomy of word embeddings. Image by the author.
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Pre-trained word representations (Mikolov et al.,

nent in many neural language understanding r
els. However, learning high quality representa-
tions can be challenging. uld ideally
1T cs of word
d (2) how these
uses vary ac inguis ontexts (i.e., to model
polysemy). In this paper, we introduce a new type
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of deep comrextualized word representation that

directly addre both challenges, can be casily
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improves the state of the art in every considered
case across a range of challenging language un-

derstanding problems.
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A Neural Network Solves,
Explains, and Generates
University Math Problems
by Program Synthesis and
Few-Shot Learning at
Human Level

OOPS!

Did not receive permission to
release the data or model fine-

tuned on the data We evaluate the ability of large
language models to fulfill the
graduation requirements for any MIT
major in Mathematics and EECS. Our
results demonstrate that GPT-3.5
successfully solves a third of the
entire MIT curriculum, while GPT-4,
with prompt engineering, achieves a
perfect solve rate on a test set
excluding questions based on images.


https://github.com/idrori/mathQ
https://arxiv.org/abs/2306.08997
https://people.csail.mit.edu/asolar/CoursesPaperStatement.pdf
https://people.csail.mit.edu/asolar/CoursesPaperStatement.pdf
https://people.csail.mit.edu/asolar/CoursesPaperStatement.pdf
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OpenAl, embedding
sentence_transformers

The FutureSight GAME
2) Adapt Zero-shot and
Few-shot Learning ->

3) Multiple response cycles
to format, capture and
evaluate the answers

MIT
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mathQ best predictions.
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context of the game to enforce format of
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ABOUT GOOGLE
CLOUD'S JOB

Our team of Generative Al Blackbelt experts is
dedicated to the success of Google's elite 200 client
portfolio. We are skilled at unlocking a trove of
productivity enhancements through innovative LLM
technical solutions. We lead engaging Executive
Briefings and immersive tutorial sessions, where we
shine a spotlight on the transformative potentials of
Generative Al tools for language and image analysis.
We reveal the power of innovation to redefine the

productivity landscape.
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About Kubra Er

MICROSOFT

yilmaz

Leverages transformative possibilities for global clients by
providing innovative solutions that seamlessly integrate LLM
APIs into their unique business frameworks. Harnesses the
power of technology to boost efficiencies, streamline
operations and realize your enterprise's potential. Holds an
engineering position in the middle of a sales organization.

| earn More



https://www.linkedin.com/comm/in/kubra-eryilmaz?midToken=AQEKtVcisqUozQ&midSig=0ieodn2tz98ac1&trk=eml-email_notification_digest_01-settings-3-prof_photo&trkEmail=eml-email_notification_digest_01-settings-3-prof_photo-null-453gw%7El147hmet%7Eu6-null-neptune%2Fprofile%7Evanity%2Eview&lipi=urn%3Ali%3Apage%3Aemail_email_notification_digest_01%3BFaAdPVXaTdC%2Fpy64o69I7A%3D%3D
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Car Damage Detection Al Model



https://www.labellerr.com/blog/ml-beginners-guide-to-build-car-damage-detection-ai-model/

LLM - Dialog
Chatbots

Customer service could not get much
worse so maybe it will get better with the
new round of chatbots. This is likely the
most prevelant use of LLMs in the near
future.

> Il B

Blender
Custom face and features creation

Hair, Clothing and Makeup
Multiple options to choose from

Voice
Multiple NLP options supported

Personality
Choose, configure and refine

Gestures
Personalize with multiple gesture options

Conversation

Create your own using Google DialogFlow, IBM Watson,

Microsoft Azure Bot Service, and Amazon LEX or other
NLPs. Or leverage our Open Al GTP integration, or a
combination.

Deployment
Deploy across multiple digital platforms and screens or
export to video for social sharing.
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The only really conceptually challenging part of RAG is retrieval:
How. do we know which documents are relevant to a given prompt?
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https://towardsdatascience.com/retrieval-augmented-generation-intuitively-and-exhaustively-explain-6a39d6fe6fc9
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From: Improving the Domain Adaptation of Retrieval Augmented Generation (RAG)_Models for

Transactions of the Association for Computational Linguistics. 2023;11:1-17. doi:10.1162/tacl_a_00530
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1. "Other symptoms observed were myalgia and headache"
2. "66% cases had crepitations and 42% had wheezing"
3. "common symptoms on admission included fever and cough”

Generated

Paraphrase
“Fever is the most
common symptom”

System Overview. Our RAG-end2end training architecture uses asynchronous processes to dynamically re-encode and re-index the knowledge base while optimizing a joint QA and paraphrasing signal loss. The training
dataset consists of both reconstruction signals and QA pairs. The network learns to generate answers to questions and useful statements jointly. The input to the BART reader is illustrated in Equation 3, where the model can

differentiate the answer generation task and statement reconstruction task with the use of a control token. During the training, embeddings and the knowledge base index get updated asynchronously.

Date of Download: 11/30/2023



https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00530/114590/Improving-the-Domain-Adaptation-of-Retrieval
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00530/114590/Improving-the-Domain-Adaptation-of-Retrieval
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00530/114590/Improving-the-Domain-Adaptation-of-Retrieval
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00530/114590/Improving-the-Domain-Adaptation-of-Retrieval

Published as a conference paper at ICLR 2023
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Figure 1: (1) Comparison of 4 prompting methods, (a) Standard, (b) Chain-of-thought (CoT,
Reason Only), (c¢) Act-only, and (d) ReAct (Reason+Act), solving a HotpotQA (Yang et al., 2018)
question. (2) Comparison of (a) Act-only and (b) ReAct prompting to solve an AlfWorld (Shridhar
et al., 2020b) game. In both domains, we omit in-context examples in the prompt, and only show task
solving trajectories generated by the model (Act, Thought) and the environment (Obs).
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ML Beginner's Guide to Build Car Damage
Detection Al Model
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